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ABSTRACT

Finite-difference, time-domain (FDTD) techniques hold much promise for performing realistic simu-
lations of sound propagation through complex, dynamic outdoor environments. This report focuses on a
key aspect of FDTD in the atmosphere, namely the incorporation of a moving background medium (wind
and turbulence in the atmosphere) into the calculations. Appropriate differential equations for FDTD
simulation of sound propagation in a moving fluid are discussed. It is shown that FDTD calculations are
not possible with this equation set when using the staggered grid, “leap-frog” approach, which is com-
mon for FDTD simulation of other types of wave propagation. Various finite-difference operators that are
valid for a moving medium, such as Runge-Kutta and an unstaggered leap-frog approach, are discussed
and compared. It is shown that a rigorous FDTD solution in a moving medium requires storing the field
variables over at least two time steps, thereby requiring at least twice as much computer memory as the
customary staggered grid. Several other topics pertinent to FDTD simulation of sound propagation in the

atmosphere are discussed, including implementation of porous ground layers, absorbing boundaries, and
rigid surfaces. Example calculations demonstrate the performance of the various finite-difference opera-
tors for a high Mach number, uniform flow. Other example calculations show FDTD calculations for
propagation above rigid and porous ground surfaces, over rigid barriers, and through turbulence. With
sufficiently dense spatial grids, very good agreement can be obtained between the FDTD calculations and
known theoretical solutions.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.
DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN TO THE ORIGINATOR.
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Finite-Difference, Time-Domain Simulation of Sound 
Propagation in a Dynamic Atmosphere 

D. KEITH WILSON AND LANBO LIU 

1 INTRODUCTION 

Acoustical sensing systems are expected to play a key role in the Army’s Future 
Force by providing non-line-of-sight surveillance over wide areas. It is well known that 
the performance of battlefield acoustical sensors is affected by complex sound propaga-
tion phenomena occurring in outdoor settings, such as reflections from trees and build-
ings, ground interactions, scattering by turbulence, refraction by wind and temperature 
gradients, and diffraction over hills. Comprehensive, controlled field studies of the effects 
of these phenomena on sensors are extremely difficult and expensive to perform. There-
fore, a high-quality simulation capable of reproducing these phenomena would be 
immensely valuable for the development of effective, reliable acoustical sensing systems. 

Most currently used numerical methods for outdoor sound propagation, such as the 
fast field program (FFP) and parabolic equation (PE), are incapable of simulating all of 
the propagation phenomena mentioned above. [The reader may refer to Attenborough et 
al. (1995) and Salomons (2001) for detailed discussions of the FFP and PE methods.] On 
the other hand, many of these phenomena are readily handled with finite-difference, time-
domain (FDTD) techniques. Reflections from and diffraction around objects such as 
buildings, trees, and hills can be readily implemented with the FDTD approach, as can 
dynamic source inputs and turbulent scattering. But there are significant drawbacks of 
FDTD that have so far prevented its widespread use in outdoor sound propagation calcu-
lations. In particular, it is very computationally intensive. Other inherent difficulties 
include implementing a time-domain impedance boundary condition for the ground and 
controlling numerical instabilities at sudden contrasts in material properties. But, given 
the inherent flexibility of the FDTD technique and the increasing capability of modern 
computers, FDTD should play an increasingly prominent role in outdoor sound propaga-
tion modeling. 

Recent papers by Blumrich and Heimann (2002) and Salomons et al. (2002) present 
2-D FDTD calculations for the atmosphere that include the effects of motion (wind and 
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turbulence) in the propagation medium and address issues related to ground interactions. 
Liu and Moran (2002) demonstrated 3-D FDTD simulations of propagation in a non-
moving atmosphere with a barrier and a dense stand of trees. Because of the substantial 
demands on computer memory, the 3-D simulations were run on a distributed, parallel-
processing computer. 

In this report we discuss in detail the implementation of FDTD for sound propagation 
in a moving atmosphere. By “moving,” we mean that motion in the medium through 
which the sound propagates has a significant impact on the propagation, which is gener-
ally true when the typical speed of motion in the medium is not very much smaller than 
the speed of wave propagation through the medium. Motion in the propagation medium 
has been justifiably neglected in previous FDTD simulations, including seismic propaga-
tion in the earth and electromagnetic propagation in the atmosphere, but it cannot be 
neglected for sound propagation in the atmosphere. For example, the speed of light in air, 
about 3 × 108 m s–1, is thirty million to one hundred million times larger than typical wind 
speeds in the atmosphere (3–10 m s–1). The speed of sound, about 340 m s–1, is only 
about 34–110 times larger. As a result, wind and turbulence in the atmosphere have 
important effects on sound propagation. 

In Section 2 of this paper, we discuss the equations for sound propagation in a mov-
ing medium. The spatially staggered finite-difference implementation of this equation set, 
in which the acoustic pressure and particle velocities are stored at different locations in 
space, is described in Section 3. Section 4 discusses advancement of the solution in time, 
on grids that are both staggered and unstaggered in time. We point out that the conven-
tional staggered-in-time, “leap-frog” approach for a nonmoving medium cannot be 
applied directly to a moving medium. The unstaggered-in-time approach allows widely 
practiced numerical techniques, such as Runge-Kutta integration, to be readily applied to 
the problem. In Section 5, several other topics pertinent to FDTD simulation of sound 
propagation in the atmosphere are discussed, including implementation of porous ground 
layers, absorbing boundaries, and rigid surfaces. Lastly, some example calculations 
involving propagation through a moving atmosphere are presented in Section 6. 
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2 EQUATIONS FOR SOUND PROPAGATION 
IN A MOVING MEDIUM 

Most currently used techniques for calculating sound propagation in the atmosphere, 
such as the fast field program and parabolic equation (FFP and PE), are based on solution 
of the wave equation or its parabolic approximation. The wave equation is second order 
with respect to its differential operators in space and time. FDTD, however, is more read-
ily applied to first-order partial differential equations. The following coupled, first-order 
equations for the acoustic pressure p and acoustic particle velocity w (Ostashev 1987, 
1997, Aldridge 2002) serve as an appropriate starting point for FDTD sound propagation 
calculations in a moving medium: 

( ) 2 2 ,p p c c Q
t

ρ ρ∂
= − ⋅∇ − ∇ ⋅ +

∂
v w  (1) 

( ) ( ) / .p
t

ρ
ρ
∇∂

= − ⋅∇ − ⋅∇ − +
∂
w w v v w F  (2) 

Here, ρ is ambient medium density, c is the adiabatic speed of sound, and v is the 
wind velocity. The quantities F and Q represent sources: the former is a force acting on 
the medium, whereas the latter is a mass source. (These may be interpreted as dipole and 
monopole pressure sources, respectively.) As is typical in aeroacoustics, these equations 
assume that (1) the sound wave is a small perturbation to the background state of the 
medium, (2) the medium behaves adiabatically (i.e., the material derivative of the specific 
entropy of the background medium vanishes), and (3) the divergence of the background 
velocity field (the turbulence) is zero. The gradient of the background pressure is also 
neglected; this approximation is reasonable for sound propagation near the ground but 
would need to be reconsidered for infrasound propagating between the ground and upper 
atmosphere. 

The terms ( )p⋅ ∇v  and ( )v w⋅ ∇  in Eq. 1 and 2 represent the transport of the 
sound wave by the atmospheric wind. These are commonly called advective terms. The 
term ( )⋅ ∇w v  in Eq. 2 represents enhancement/diminishment of the acoustic particle 
velocity by spatial variations in the wind field. For a nonmoving medium (v = 0), one can 
derive the customary wave equation for the acoustic pressure by taking the time deriva-
tive of Eq. 1 and the divergence of Eq. 2. However, the additional terms involving the 
wind velocity introduce significant complications when attempting to derive wave equa-
tions or parabolic equations for use in an FFP or PE (Pierce 1990, Ostashev et al. 1997, 
Lingevitch et al. 2002). An FDTD code based on the first-order Eq. 1 and 2 would be 
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more general and accurate than most current sound propagation formulations, despite the 
fairly simple appearance of the differential equations. 

In this report we consider the FD implementation of Eq. 1 and 2 in two dimensions. 
This simplifies the presentation considerably and makes it possible to run calculations on 
single-processor computers. The generalization of the results to three dimensions is quite 
straightforward but more computationally intensive. In two dimensions, Eq. 1 and 2 
become 

,yx
x y

wp wv v p Q
t x y x y

κ κ
∂∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞= − + − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (3) 

,x
x y x x y x x

w pw w v v v w b bF
t x y x y x

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + − + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (4) 

and 

,y
x y y x y y y

w pw w v v v w b bF
t x y x y y

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + − + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (5) 

where b = 1/ρ is the mass buoyancy and c = ρc2 is the adiabatic bulk modulus. 
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3 STAGGERED SPATIAL FINITE-DIFFERENCE GRID 

In this section we consider second-order approximations of the spatial derivatives in 
Eq. 3–5. The spatial finite-difference analysis in this report is based entirely on a grid for 
the pressure and particle velocities that is staggered in space, as shown in Figure 1. In this 
grid the pressure is stored at whole nodes, namely x = i∆x and y = j∆y, where i and j are 
integers and ∆x and ∆y are the grid spacings in the x and y directions.* The x components 
of the acoustic particle velocity, wx, are staggered (offset) by ∆x/2 in the x direction. The 
y components of the acoustic particle velocity, wy, are staggered by ∆y/2 in the y direc-
tion. An additional convention in this report is that the quantities b, κ, and Q are stored at 
the pressure nodes. The quantities vx and Fx are stored at the wx nodes, and vy and Fy are 
stored at the wy nodes. 

 

Figure 1. Spatially staggered finite-difference grid for solution 
of acoustic wave propagation. 

Centered, finite-difference solution of Eq. 3–5 requires an evaluation of the right-
hand sides of these equations at the grid nodes where the field variable is stored. For 

                                                      
*The spatially staggered grid in Fig. 1 matches the one normally used for wave propagation 
calculations in nonmoving media. Given the difficulties of applying the staggered grid to a 
moving medium, it would be worthwhile considering the potential advantages of spatially 
unstaggered grids in this context. Such consideration is not given in this report, however. 
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example, we will need finite-difference approximations, centered at x = i∆x and y = j∆y, 
for all terms on the right-hand side of Eq. 3. Finite difference approximations centered on 
x = (i + 1/2)∆x and y = j∆y are needed for Eq. 4, whereas approximations centered on x = 
i∆x and y = (j + 1/2)∆y are needed for Eq. 5. 

Consider first the source terms and coefficients involving the medium properties. The 
source terms can be used directly, since they are already stored at the grid nodes where 
the FD approximations are centered. The same is true of κ, which is stored at the pressure 
grid nodes and needed in Eq. 3. Regarding Eq. 4 and 5, the values for b can be deter-
mined at the needed locations by averaging neighboring values: 

( )[ ] ( )[ ] [ ]1 , , , ,
1/ 2 , , ,

2
b i x j y t b i x j y t

b i x j y t
+ ∆ ∆ + ∆ ∆

+ ∆ ∆
 (6) 

( )[ ] ( )[ ] [ ], 1 , , ,
, 1/ 2 , .

2
b i x j y t b i x j y t

b i x j y t
∆ + ∆ + ∆ ∆

∆ + ∆  (7) 

One of the main motivations for using the spatially staggered grid is that it conven-
iently provides centered spatial differences for many of the derivatives in Eq. 3–5. In 
particular, 

( ) ( )[ ] ( )[ ]1/ 2 , , 1/ 2 , ,, , ,x xx w i x j y t w i x j y tw i x j y t
x x

+ ∆ ∆ − − ∆ ∆∂ ∆ ∆
∂ ∆

 (8) 

( ) ( )[ ] ( )[ ], , , 1/ 2 , , 1/ 2 ,
,y y yw i x j y t w i x j y t w i x j y t

y y
∂ ∆ ∆ ∆ + ∆ − ∆ − ∆

∂ ∆
 (9) 

( )[ ] ( )[ ] [ ]1/ 2 , , 1 , , , ,
,

p i x j y t p i x j y t p i x j y t
x x

∂ + ∆ ∆ + ∆ ∆ − ∆ ∆
∂ ∆

 (10) 

and 

( )[ ] ( )[ ] [ ], 1/ 2 , , 1 , , ,
.

p i x j y t p i x j y t p i x j y t
y y

∂ ∆ + ∆ ∆ + ∆ − ∆ ∆
∂ ∆

 (11) 

At this point we have developed centered approximations for all of the terms in Eq. 
3–5 that are present for a nonmoving medium. Implementation of the remaining terms is 
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somewhat more complicated, however. For example, the derivatives of the pressure field 
in Eq. 3, ∂p/∂x and ∂p/∂y, cannot be centered at x = i∆x and y = j∆y from approximations 
across a single grid interval. We can develop centered approximations across two grid 
intervals, however: 

( ) ( )[ ] ( )[ ]1 , , 1 , ,, , ,
2

p i x j y t p i x j y tp i x j y t
x x

+ ∆ ∆ − − ∆ ∆∂ ∆ ∆
∂ ∆

 (12) 

and 

( ) ( )[ ] ( )[ ], 1 , , 1 ,, , .
2

p i x j y t p i x j y tp i x j y t
y y

∆ + ∆ − ∆ − ∆∂ ∆ ∆
∂ ∆

 (13) 

To find the wind velocity components vx and vy evaluated at x = i∆x and y = j∆y 
(multiplying the derivatives ∂p/∂x and ∂p/∂y, respectively, in Eq. 3), we average values at 
neighboring grid points:  

( ) ( )[ ] ( )[ ]1/ 2 , , 1/ 2 , ,
, , ,

2
x x

x
v i x j y t v i x j y t

v i x j y t
+ ∆ ∆ + − ∆ ∆

∆ ∆  (14) 

( )
( )[ ] ( )[ ], 1/ 2 , , 1/ 2 ,

, , .
2

y y
y

v x j y t v i x j y t
v i x j y t

∆ + ∆ + ∆ − ∆
∆ ∆  (15) 

A similar approach to Eq. 4 and 5 leads to the approximations 

( )[ ]

( )[ ] ( )[ ]

1/ 2 , ,

3 / 2 , , 1/ 2 , ,
,

2

x

x x

w i x j y t
x

w i x j y t w i x j y t
x

∂ + ∆ ∆
∂

+ ∆ ∆ − − ∆ ∆
∆

 (16) 

( )[ ]

( ) ( )[ ] ( ) ( )[ ]

1/ 2 , ,

1/ 2 , 1 , 1/ 2 , 1 ,
,

2

x

x x

w i x j y t
y

w i x j y t w i x j y t
y

∂ + ∆ ∆
∂

+ ∆ + ∆ − + ∆ − ∆
∆

 (17) 
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( )[ ]

( ) ( )[ ] ( ) ( )[ ]

, 1/ 2 ,

1 , 1/ 2 , 1 , 1/ 2 ,
,

2

y

y y

w i x j y t
x

w i x j y t w i x j y t
x

∂ ∆ + ∆
∂

+ ∆ + ∆ − − ∆ + ∆
∆

 (18) 

and 

( )[ ]

( )[ ] ( )[ ]

, 1/ 2 ,

, 3 / 2 , , 1/ 2 ,
.

2

y

y y

w i x j y t
y

w i x j y t w i x j y t
y

∂ ∆ + ∆
∂

∆ + ∆ − ∆ − ∆
∆

 (19) 

The same approximations hold for derivatives of the wind field when wx is replaced 
by vx and wy by vy. In Eq. 4 the quantities wy and vy (multiplying the derivatives ∂vx/∂y 
and ∂wx/∂y, respectively) are needed at the grid point x = (i + 1/2)∆x and y = j∆y. Refer-
ring to Figure 1, a reasonable way to obtain these quantities would be to average the four 
closest grid nodes: 

( )[ ]

( ) ( )[ ] ( )[ ]

( ) ( )[ ] ( )[ ]

1/ 2 , ,

1
1 , 1/ 2 , , 1/ 2 ,

4

1 , 1/ 2 , , 1/ 2 , ,

{
}

y

y y

y y

w i x j y t

w i x j y t w i x j y t

w i x j y t w i x j y t

+ ∆ ∆

+ ∆ + ∆ + ∆ + ∆

+ + ∆ − ∆ + ∆ − ∆

 (20) 

and likewise for vy. Similarly, in Eq. 5 the quantities wx and vx (multiplying the deriva-
tives ∂vy/∂x and ∂wy/∂x, respectively) are needed at the grid point x = i∆x and  
y = (j + 1/2)∆y. We have 

( )[ ]

( ) ( )[ ] ( )[ ]

( ) ( )[ ] ( )[ ]

, 1/ 2 ,
1

1/ 2 , 1 , 1/ 2 , ,
4

1/ 2 , 1 , 1/ 2 , , ,

{
}

x

x x

x x

w i x j y t

w i x j y t w i x j y t

w i x j y t w i x j y t

∆ + ∆

+ ∆ + ∆ + + ∆ ∆

+ − ∆ + ∆ + − ∆ ∆

 (21) 

and likewise for vx. 
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Equations 6–21 provide finite-difference approximations for all of the quantities 
appearing on the right-hand sides of Eq. 3–5. We next turn our attention to finite-
difference approximations for the temporal derivatives. 
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4 TEMPORAL FINITE-DIFFERENCE GRIDS 

In this section we consider two alternative approaches to advancing the wavefield 
variables in time. The first is based on an unstaggered-in-time grid, meaning that the 
pressure and acoustic particle velocities are stored on the same time level. The second is 
based on a staggered-in-time grid, in which the pressure and particle velocities are stored 
on alternating half time steps. 

Solution on a Grid Unstaggered in Time 

Let us define fp as the right-hand side of Eq. 3. We write  

( ) ( ) ( ) ( ) ( )[ ], ,
, , , , , ,p x y

p i x j y t
f i x j y t t t t

t
∂ ∆ ∆

= ∆ ∆
∂

p w w s  (22) 

where p(t), wx(t), and wy(t) represent matrices containing the pressures and particle 
velocities at all available grid nodes. Furthermore, s(t) represents the source and medium 
properties (b, κ, vx, vy, Q, Fx, and Fy) at all available grid nodes.* From Eq. 8–9 and 12–
15, the second-order FD approximation of fp is  

( ) ( ) ( ) ( )

( )[ ] ( )[ ]{ }

( )[ ] ( )[ ]{ }

( )[ ] ( )[ ]{ }

( )[ ] ( )[ ]{ }

( )
( )[ ] ( )[ ]

, , , , ,

1 1/ 2 , , 1/ 2 , ,
4

1 , , 1 , ,

1 , 1/ 2 , , 1/ 2 ,
4

, 1 , , 1 ,

1/ 2 , , 1/ 2 , ,
, ,

[ ]

{

p x y

x x

y y

x x

y

f i x j y t t t t

v i x j y t v i x j y t
x

p i x j y t p i x j y t

v x j y t v i x j y t
y

p i x j y t p i x j y t

w i x j y t w i x j y t
i x j y t

x

w i x

κ

∆ ∆

− + ∆ ∆ + − ∆ ∆
∆

× + ∆ ∆ − − ∆ ∆

− ∆ + ∆ + ∆ − ∆
∆

× ∆ + ∆ − ∆ − ∆

+ ∆ ∆ − − ∆ ∆
− ∆ ∆

∆

∆
+

p w w s

( )[ ] ( )[ ]

( ) ( )

, 1/ 2 , , 1/ 2 ,

, , , , .

}yj y t w i x j y t
y

i x j y t Q i x j y tκ

+ ∆ − ∆ − ∆
∆

+ ∆ ∆ ∆ ∆

 (23)

 

                                                      
*Note that fp[i∆x, j∆y, p(t), wx(t), wy(t), s(t)] in actuality depends only on the fields at grid points 
in the immediate vicinity of (i∆x, j∆y) when second-order spatial differencing is used. The 
notation used here, which is convenient for discussion purposes, is general enough to accommodate 
spatial differencing of an arbitrarily high order as well as staggered and unstaggered spatial grids. 
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Similarly to Eq. 22 we define fx and fy as the right-hand sides of Eq. 4 and 5:  

( )[ ] ( ) ( ) ( ) ( ) ( )[ ]1/ 2 , ,
1/ 2 , , , , , ,x

x x y
w i x j y t

f i x j y t t t t
t

∂ + ∆ ∆
= + ∆ ∆

∂
p w w s  (24) 

and  

( )[ ]
( ) ( ) ( ) ( ) ( )[ ]

, 1/ 2 ,
, 1/ 2 , , , , ,y

y x y
w i x j y t

f i x j y t t t t
t

∂ ∆ + ∆
= ∆ + ∆

∂
p w w s  (25) 

where, from the equations in Section 3, 

( ) ( ) ( ) ( ) ( )[ ]

( )[ ]{ ( )[ ] ( )[ ]}

( ) ( )[ ] ( )[ ]{

( ) ( )[ ] ( )[ ]}

( ) ( )[ ] ( ) ( )[ ]}{

( )

1/ 2 , , , , ,

1/ 2 , ,
3 / 2 , , 1/ 2 , ,

2

1 1 , 1/ 2 , , 1/ 2 ,
8

1 , 1/ 2 , , 1/ 2 ,

1/ 2 , 1 , 1/ 2 , 1 ,

1/ 2 ,

x x y

x
x x

y y

y y

x x

x

f i x j y t t t t

w i x j y t
v i x j y t v i x j y t

x

w i x j y t w i x j y t
y

w i x j y t w i x j y t

v i x j y t v i x j y t

v i x j y

+ ∆ ∆

+ ∆ ∆
− + ∆ ∆ − − ∆ ∆

∆

− + ∆ + ∆ + ∆ + ∆
∆

+ + ∆ − ∆ + ∆ − ∆

× + ∆ + ∆ − + ∆ − ∆

+ ∆ ∆
−

p w w s

[ ]{ ( )[ ] ( )[ ]}

( ) ( )[ ] ( )[ ]{

( ) ( )[ ] ( )[ ]}

( ) ( )[ ] ( ) ( )[ ]}{

( )[ ] [ ]{ }

( )[ ] [ ]}{

,
3 / 2 , , 1/ 2 , ,

2

1 1 , 1/ 2 , , 1/ 2 ,
8

1 , 1/ 2 , , 1/ 2 ,

1/ 2 , 1 , 1/ 2 , 1 ,

1 1 , , , ,
2

1 , , , ,

x x

y y

y y

x x

t
w i x j y t w i x j y t

x

v i x j y t v i x j y t
y

v i x j y t v i x j y t

w i x j y t w i x j y t

b i x j y t b i x j y t
x

p i x j y t p i x j y t

b i

+ ∆ ∆ − − ∆ ∆
∆

− + ∆ + ∆ + ∆ + ∆
∆

+ + ∆ − ∆ + ∆ − ∆

× + ∆ + ∆ − + ∆ − ∆

− + ∆ ∆ + ∆ ∆
∆

× + ∆ ∆ − ∆ ∆

+
+

( )[ ] [ ] ( )[ ]
1 , , , ,

1/ 2 , ,
2 x

x j y t b i x j y t
F i x j y t

∆ ∆ + ∆ ∆
+ ∆ ∆

 

(26)

 

and 
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( ) ( ) ( ) ( ) ( )[ ]

( ) ( )[ ] ( )[ ]{

( ) ( )[ ] ( )[ ]}

( ) ( )[ ] ( ) ( )[ ]}{

( )[ ]{ ( )[ ] ( )[ ]}

( )

, 1/ 2 , , , ,

1 1/ 2 , 1 , 1/ 2 , ,
8

1/ 2 , 1 , 1/ 2 , ,

1 , 1/ 2 , 1 , 1/ 2 ,

, 1/ 2 ,
, 3 / 2 , , 1/ 2 ,

2

1 1/ 2
8

y x y

y x

x x

y y

y
y y

x

f i x j y t t t t

w i x j y t w i x j y t
x

w i x j y t w i x j y t

v i x j y t v i x j y t

w i x j y t
v i x j y t v i x j y t

y

v i x
x

∆ + ∆

− + ∆ + ∆ + + ∆ ∆
∆

+ − ∆ + ∆ + − ∆ ∆

× + ∆ + ∆ − − ∆ + ∆

∆ + ∆
− ∆ + ∆ − ∆ − ∆

∆

− + ∆
∆

p w w s

( )[ ] ( )[ ]{

( ) ( )[ ] ( )[ ]}

( ) ( )[ ] ( ) ( )[ ]}{

( )[ ]{ ( )[ ] ( )[ ]}

( )[ ] [ ]{ }

( )[ ] [ ]}{

, 1 , 1/ 2 , ,

1/ 2 , 1 , 1/ 2 , ,

1 , 1/ 2 , 1 , 1/ 2 ,

, 1/ 2 ,
, 3 / 2 , , 1/ 2 ,

2

1 , 1 , , ,
2

, 1 , , ,

x

x x

y y

y
y y

j y t v i x j y t

v i x j y t v i x j y t

w i x j y t w i x j y t

v i x j y t
w i x j y t w i x j y t

y

b i x j y t b i x j y t
y

p i x j y t p i x j y t

b i

+ ∆ + + ∆ ∆

+ − ∆ + ∆ + − ∆ ∆

× + ∆ + ∆ − − ∆ + ∆

∆ + ∆
− ∆ + ∆ − ∆ − ∆

∆

− ∆ + ∆ + ∆ ∆
∆

× ∆ + ∆ − ∆ ∆

∆
+

( )[ ] [ ] ( )[ ]
, 1 , , ,

, 1/ 2 , .
2 y

x j y t b i x j y t
F i x j y t

+ ∆ + ∆ ∆
∆ + ∆

 

(27)

 

Suppose now that p, wx, wy, and s are stored at discrete time levels t = l∆t. A simple 
approximation to the time derivatives that we could consider is the forward-difference 
approximation, namely, 

( ) ( )[ ] [ ], , 1 , ,, ,
,

p i x j y l t p i x j y l tp i x j y l t
t t

∆ ∆ + ∆ − ∆ ∆ ∆∂ ∆ ∆ ∆
∂ ∆

 (28) 

and similarly for ∂wx [(i + 1/2) ∆x, j∆y, l∆t]/ ∂t and ∂wy [i∆x, (j + 1/2)∆y, l∆t]/ ∂t. Solving 
for the variables at the time t = (l + 1)∆t gives 
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( )[ ] [ ]

( ) ( ) ( ) ( )[ ]

, , 1 , ,

, , , , , ,p x y

p i x j y l t p i x j y l t

tf i x j y l t l t l t l t

∆ ∆ + ∆ = ∆ ∆ ∆

+∆ ∆ ∆ ∆ ∆ ∆ ∆p w w s
 (29) 

( ) ( )[ ] ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]

1/ 2 , , 1 1/ 2 , ,

1/ 2 , , , , , ,

x x

x x y

w i x j y l t w i x j y l t

tf i x j y l t l t l t l t

+ ∆ ∆ + ∆ = + ∆ ∆ ∆

+∆ + ∆ ∆ ∆ ∆ ∆ ∆p w w s
 (30) 

and 

( ) ( )[ ] ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]

, 1/ 2 , 1 , 1/ 2 ,

, 1/ 2 , , , , .

y y

y x y

w i x j y l t w i x j y l t

tf i x j y l t l t l t l t

∆ + ∆ + ∆ = ∆ + ∆ ∆

+∆ ∆ + ∆ ∆ ∆ ∆ ∆p w w s
 (31) 

This method of advancing the variables in time based on forward differences is often 
called Euler’s method (e.g., Burden et al. 1981, Kreyszig 1988). Unfortunately, as dis-
cussed in Kasahara (1977), this method is unconditionally unstable. Even when the time 
step is made very small, the error will grow exponentially and eventually become 
unacceptable. 

A better approach is to center the approximations for the time derivatives by using 
fields from two previous time steps:  

( ) ( )[ ] ( )[ ], , 1 , , 1, ,
.

2
p i x j y l t p i x j y l tp i x j y l t

t t
∆ ∆ + ∆ − ∆ ∆ − ∆∂ ∆ ∆ ∆

∂ ∆
 (32) 

Note that the derivative at t = l∆t is being estimated from the fields at t = (l – 1)∆t 
and t = (l + 1)∆t. This leads to the updating equation 

( )[ ] ( )[ ]

( ) ( ) ( ) ( )[ ]

, , 1 , , 1

2 , , , , , ,p x y

p i x j y l t p i x j y l t

tf i x j y l t l t l t l t

∆ ∆ + ∆ = ∆ ∆ − ∆

+ ∆ ∆ ∆ ∆ ∆ ∆ ∆p w w s
 (33) 

and similarly for wx and wy. Kasahara (1977) calls this method the “leap-frog” scheme. 
Unlike the Euler scheme, it is generally stable. The leap-frog scheme was one of the most 
common in atmospheric modeling at the time of Kasahara’s writing. As will be shown 
later with examples, it is also a satisfactory scheme for calculating sound propagation in a 
moving medium. However, the field variables must be stored over two time steps, 
thereby doubling memory requirements. In recent decades the leap-frog scheme has been 
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replaced by somewhat more complicated ones that usually provide more accurate calcu-
lations with little additional computational burden. 

One important class of numerical methods that is in widespread usage today is the 
Runge-Kutta methods (Burden et al. 1981, Kreyszig 1988). The second-order Runge-
Kutta method (also called Heun’s method or the Improved Euler method) can be moti-
vated in an intuitive, heuristic manner. It begins in the same way as Euler’s method, by 
forming an estimate for the field at the next time step based on Eq. 29–31. These 
approximations are indicated here with superscripted asterisks, i.e., 

( )[ ] [ ]

( ) ( ) ( ) ( )[ ]

, , 1 , ,

, , , , , ,p x y

p i x j y l t p i x j y l t

tf i x j y l t l t l t l t

∗ ∆ ∆ + ∆ = ∆ ∆ ∆

+∆ ∆ ∆ ∆ ∆ ∆ ∆p w w s
 (34) 

( ) ( )[ ] ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]

1/ 2 , , 1 1/ 2 , ,

1/ 2 , , , , , ,

x x

x x y

w i x j y l t w i x j y l t

tf i x j y l t l t l t l t

∗ + ∆ ∆ + ∆ = + ∆ ∆ ∆

+∆ + ∆ ∆ ∆ ∆ ∆ ∆p w w s
 (35) 

( ) ( )[ ] ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]

, 1/ 2 , 1 , 1/ 2 ,

, 1/ 2 , , , , .
y y

y x y

w i x j y l t w i x j y l t

tf i x j y l t l t l t l t

∗ ∆ + ∆ + ∆ = ∆ + ∆ ∆

+ ∆ + ∆ ∆ ∆ ∆ ∆p w w s
 (36) 

Next ( )[ 1 ]l t∗ + ∆p , ( )[ 1 ]x l t∗ + ∆w , and ( )[ 1 ]y l t∗ + ∆w  are used to estimate a 
value for the derivative functions fp, fx, and fy at the end of the time step, e.g., 

( )[ ] ( )[ ] ( )[ ] ( )[ ][ ]

( )[ ] ( )[ ] ( )[ ] ( )[ ]

, , 1 , 1 , 1 , 1

, , 1 , 1 , 1 , 1 .

p x y

p x y

f i x j y l t l t l t l t

f i x j y l t l t l t l t∗ ∗ ∗

∆ ∆ + ∆ + ∆ + ∆ + ∆

⎡ ⎤∆ ∆ + ∆ + ∆ + ∆ + ∆⎣ ⎦

p w w s

p w w s
 (37) 

Then, in updating the fields, the derivatives at the beginning and end of the time step 
are averaged to approximate the derivative centered on the time step. Specifically the 
pressure field is advanced by the equation 

( )[ ] [ ]

( ) ( ) ( ) ( )[ ]

( )[ ] ( )[ ] ( )[ ] ( )[ ]

, , 1 , ,

, , , , ,
2

, , 1 , 1 , 1 , 1 .

{
}

p x y

p x y

p i x j y l t p i x j y l t
t f i x j y l t l t l t l t

f i x j y l t l t l t l t∗ ∗ ∗

∆ ∆ + ∆ = ∆ ∆ ∆

∆
+ ∆ ∆ ∆ ∆ ∆ ∆

⎡ ⎤+ ∆ ∆ + ∆ + ∆ + ∆ + ∆⎣ ⎦

p w w s

p w w s

(38) 
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The particle velocities are advanced in the same way. 

The fourth-order Runge-Kutta method (Burden et al. 1981, Kreyszig 1988) is also 
widely used. We do not attempt a heuristic explanation of it here but rather just state the 
equations as they appear in the notation of this report: 

( ) ( ) ( ) ( ) ( )[ ]1 , , , , , , , ,p x yp i x j y l t tf i x j y l t l t l t l t∆ ∆ ∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆p w w s  (39) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ]

2 1

1 1

, , , , / 2,

/ 2, / 2, 1/ 2 ,

[

]
p

x x y y

p i x j y l t tf i x j y l t l t

l t l t l t l t l t

∆ ∆ ∆ = ∆ ∆ ∆ ∆ + ∆

∆ + ∆ ∆ + ∆ + ∆

p p

w w w w s
 (40) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ]

3 2

2 2

, , , , / 2,

/ 2, / 2, 1/ 2 ,

[

]
p

x x y y

p i x j y l t tf i x j y l t l t

l t l t l t l t l t

∆ ∆ ∆ = ∆ ∆ ∆ ∆ + ∆

∆ + ∆ ∆ + ∆ + ∆

p p

w w w w s
 (41) 

( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]

4 3

3 3

, , , , ,

, , ,

[

]
p

x x y y

p i x j y l t tf i x j y l t l t

l t l t l t l t l t

∆ ∆ ∆ = ∆ ∆ ∆ ∆ + ∆

∆ + ∆ ∆ + ∆ ∆

p p

w w w w s
 (42) 

and 

( )[ ] [ ]

( ) ( )
( ) ( )

1 2

3 4

, , 1 , ,

, , 2 , ,1 .
6 2 , , , ,

p i x j y l t p i x j y l t

p i x j y l t p i x j y l t

p i x j y l t p i x j y l t

∆ ∆ + ∆ = ∆ ∆ ∆

⎧ ⎫∆ ∆ ∆ + ∆ ∆ ∆⎪ ⎪+ ⎨ ⎬
+ ∆ ∆ ∆ + ∆ ∆ ∆⎪ ⎪⎩ ⎭

 (43) 

Equations for wx are the same except with fx replacing fp and (i + 1/2)∆x replacing 
i∆x; equations for wy are the same except with fy replacing fp and (j + 1/2)∆y replacing 
j∆y. 

Solution on a Grid Staggered in Time 

A common approach to FDTD solution for wave propagation in a nonmoving 
medium is to use a staggered, centered finite-differences grid in time. This approach is 
discussed, for example, by Yee (1966) and Botteldooren (1994). The main motivation for 
this approach is that it produces a solution with second-order accuracy with regard to the 
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temporal grid resolution ∆t, while requiring storage of the wavefield variables at only a 
single time step. 

Consider Eq. 3–5, as specialized for a nonmoving medium: 

,yx wp w Q
t x y

κ κ
∂∂ ∂⎛ ⎞

= − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (44) 

,x
x

pw b bF
t x

∂∂
= − +

∂ ∂
 (45) 

and 

.y
y

w pb bF
t y

∂ ∂
= − +

∂ ∂
 (46) 

Suppose now that the pressure is stored on the whole time steps and the velocities at 
the half time steps. By forming centered FD approximations in time, we have, for the 
pressure 

( )[ ]

( )[ ] ( )[ ] ( )[ ][ ]
( )[ ] [ ]

, , 1/ 2

, , 1/ 2 , 1/ 2 , 1/ 2

, , 1 , ,
.

p x y

p i x j y l t
t

f i x j y l t l t l t

p i x j y l t p i x j y l t
t

∂ ∆ ∆ + ∆
∂

= ∆ ∆ + ∆ + ∆ + ∆

∆ ∆ + ∆ − ∆ ∆ ∆
∆

w w s  (47) 

Solving for p[i∆x, j∆y, (l + 1)∆t], we have  

( )[ ] [ ]

( )[ ] ( )[ ] ( )[ ][ ]

, , 1 , ,

, , 1/ 2 , 1/ 2 , 1/ 2 .p x y

p i x j y l t p i x j y l t

tf i x j y l t l t l t

∆ ∆ + ∆ = ∆ ∆ ∆

+ ∆ ∆ ∆ + ∆ + ∆ + ∆w w s
 (48) 

A similar process for the velocities yields 

( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )[ ]

1/ 2 , , 1/ 2 1/ 2 , , 1/ 2

1/ 2 , , , ,

x x

x

w i x j y l t w i x j y l t

tf i x j y l t l t

+ ∆ ∆ + ∆ = + ∆ ∆ − ∆

+ ∆ + ∆ ∆ ∆ ∆p s
 (49) 
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and 

( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )[ ]

, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2

, 1/ 2 , , .

y y

y

w i x j y l t w i x j y l t

tf i x j y l t l t

∆ + ∆ + ∆ = ∆ + ∆ − ∆

+ ∆ ∆ + ∆ ∆ ∆p s
 (50) 

Note, for this scheme, that fp is needed in Eq. 48 only on the half time steps, and that 
only the particle velocities (not the pressure) are needed for its calculation. Furthermore, 
in Eq. 49 and 50, fx and fy are needed only on the whole time steps and require only the 
pressure. Therefore, the solution can be advanced in time by solving for the pressure on a 
whole time step, solving for the particle velocities on the next half time step, solving for 
the pressure at the next whole time step, etc. The wavefield variables can be overwritten 
in place as they are updated. Because the centered differences are accurate to second-
order, this scheme provides good accuracy as well as efficiency in its use of computer 
memory. This staggered scheme is usually called the leap-frog method, which unfortu-
nately is the same term used by Kasahara (1977) in connection with the unstaggered, 
centered, second-order scheme (Eq. 33). 

Extending consideration now to the moving medium, we see in comparing Eq. 3 and 
44 that pressure is no longer absent from fp. Similarly wx and wy are required in the 
calculation of fx and fy:  

( )[ ] [ ]

( )[ ] ( )[ ]
( )[ ] ( )[ ]

, , 1 , ,

, , 1/ 2 , 1/ 2 ,
.

1/ 2 , 1/ 2
x

p
y

p i x j y l t p i x j y l t

i x j y l t l t
tf

l t l t

∆ ∆ + ∆ = ∆ ∆ ∆

∆ ∆ + ∆ + ∆⎡ ⎤
+ ∆ ⎢ ⎥+ ∆ + ∆⎣ ⎦

p w
w s

 (51) 

A similar process for the velocities yields 

( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]

1/ 2 , , 1/ 2 1/ 2 , , 1/ 2

1/ 2 , , , , , ,

x x

x x y

w i x j y l t w i x j y l t

tf i x j y l t l t l t l t

+ ∆ ∆ + ∆ = + ∆ ∆ − ∆

+ ∆ + ∆ ∆ ∆ ∆ ∆ ∆p w w s
 (52) 

and 

( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]

, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2

, 1/ 2 , , , , .

y y

y x y

w i x j y l t w i x j y l t

tf i x j y l t l t l t l t

∆ + ∆ + ∆ = ∆ + ∆ − ∆

+ ∆ ∆ + ∆ ∆ ∆ ∆ ∆p w w s
 (53) 
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As a result, it is no longer possible to implement the basic staggered-in-time scheme 
considered in the previous paragraph. One work-around that might be considered is to 
substitute {p[(l + 1)∆t] + p[l∆t]}/2 where p[(l + 1/2)∆t] is needed in Eq. 48. However, 
one is then left with an equation for p[i∆x, j∆y, (l + 1)∆t] that cannot be solved without 
simultaneously knowing the pressure at all locations at t = (l + 1)∆t. Therefore, this pro-
cedure does not provide an explicit method for updating the pressure field at each time 
step. 

Another possibility would be to simply use the pressure field p(l∆t) in place of p[(l + 
1/2)∆t when evaluating fp, and wx[(l – 1/2)∆t] and wy[(l – 1/2)∆t] in place of wx(l∆t) and 
wy(l∆t) when evaluating fx and fy. This nonrigorous procedure is somewhat similar to 
using the Euler (forward-difference) method from the previous section to evaluate the 
advective terms while maintaining the staggered-in-time grid approach for the terms 
related to the nonmoving medium. From a programming standpoint, one simply updates 
(overwrites) p based on calculation of fp from the currently stored p, wx, and wy, and then 
updates wx and wy based on calculation of fx and fy from the currently stored values for p, 
wx, and wy. This alternating process is repeated until the calculation reaches the desired 
end. The calculations in Salomons et al. (2002) and Blumrich and Heimann (2002) 
appear to be based on such a procedure. Salomons et al. mention (p. 486) that they first 
solve for the particle velocities and then use these updated velocities to calculate the 
pressure, cautioning that “Use of the non-updated velocities gives an unstable solution.” 
Thus, the authors appear to be using a temporally staggered implementation, although it 
is not entirely clear from the equations presented in the text. 

A rigorous scheme for performing centered, finite-difference calculations on a 
staggered-in-time grid has been proposed by D. Aldridge.* This scheme involves storing 
the field variables back two steps in time, rather than just one, as has been considered 
thus far. Forming a centered finite difference across two time steps, one has, instead of 
Eq. 51, 

( )[ ]

( )[ ]

( ) ( ) ( ) ( )[ ]

, , 1

, , 1

2 , , , , , .p x y

p i x j y l t

p i x j y l t

tf i x j y l t l t l t l t

∆ ∆ + ∆

= ∆ ∆ − ∆

+ ∆ ∆ ∆ ∆ ∆ ∆ ∆p w w s

 (54) 

The problem now is that the velocities are unknown on the time step t = l∆t. This can 
be overcome by averaging the velocities from the neighboring two time steps; that is, 

                                                      
* Personal communication, 2003. 
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( )
( )[ ] ( )[ ]1/ 2 1/ 2

2
x x

x
l t l t

l t
+ ∆ + − ∆

∆
w w

w  (55) 

and  

( )
( )[ ] ( )[ ]1/ 2 1/ 2

.
2

y y
y

l t l t
l t

+ ∆ + − ∆
∆

w w
w  (56) 

Similarly, the velocities can be updated with the equations 

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( )[ ]
( )[ ] ( )[ ]

1/ 2 , , 1/ 2 1/ 2 , , 3/ 2

1/ 2 , , 1/ 2 , 1/ 2 ,
2 ,

1/ 2 , 1/ 2

x x

x
x

y

w i x j y l t w i x j y l t

i x j y l t l t
tf

l t l t

+ ∆ ∆ + ∆ = + ∆ ∆ − ∆

+ ∆ ∆ − ∆ − ∆⎡ ⎤
+ ∆ ⎢ ⎥− ∆ − ∆⎣ ⎦

p w
w s

 (57) 

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]
( )[ ] ( )[ ] ( )[ ]

, 1/ 2 , 1/ 2 , 1/ 2 , 3/ 2

, 1/ 2 , 1/ 2 ,
2 ,

1/ 2 , 1/ 2 , 1/ 2

y y

y
x y

w i x j y l t w i x j y l t

i x j y l t
tf

l t l t l t

∆ + ∆ + ∆ = ∆ + ∆ − ∆

∆ + ∆ − ∆⎡ ⎤
+ ∆ ⎢ ⎥− ∆ − ∆ − ∆⎣ ⎦

p
w w s

 (58) 

and 

( )[ ] [ ] ( )[ ]1
1/ 2 .

2
l t l t

l t
∆ + − ∆

− ∆
p p

p  (59) 

This scheme is similar to the unstaggered leap-frog method discussed in the previous 
section. The main differences are (1) the averaging of the field variables from the 
neighboring time steps, displaced ±1/2 time of the centered approximation, and (2) the 
alternating update of the pressure and particle velocities. 
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5 IMPLEMENTATION OF REFLECTIVE SURFACES 

In this section we consider boundary conditions for the finite-difference solution as 
well as the incorporation of a physically realistic ground layer. 

Rigid Surfaces 

Hard surfaces such as buildings, walls, and ice can often be modeled as acoustically 
rigid. By definition, the acoustic particle velocity vanishes in the direction normal to the 
rigid surface. A practical method for handling the rigid boundary is the method of 
images. In this method the actual medium below the rigid boundary is replaced by the 
mirror reflection of the medium above the boundary. An image source is placed at a 
distance below the boundary that is equal to the distance above the boundary for the 
actual source. Therefore, the solutions of the differential equations above and below the 
boundary are the same, except that they are reversed in the coordinate direction normal to 
the boundary. As a result, the acoustic particle velocities in the two solutions exactly 
cancel at the boundary. Because the solution above the boundary satisfies the original 
differential equation and the desired boundary condition, we are guaranteed that it is the 
correct, unique solution. (The solution below the boundary is incorrect, but that is not a 
concern.) 

Let us consider the finite-difference equations 23–27 in the presence of a rigid 
surface.* The surface is assumed to be positioned at y = (j – 1/2)∆y in Figure 1. In the 
pressure derivative equation, Eq. 23, we of course would set wy[i∆x, (j – 1/2)∆y, t] = 0. 
One also must have vy[i∆x, (j – 1/2)∆y, t] = 0 at the rigid boundary. (Otherwise, the wind 
fields on the two sides of the boundary would be discontinuous.) The only other quantity 
in Eq. 23 that is directly affected by the boundary is p[i∆x, (j – 1)∆y, t]. By the image 
method, the pressure field is reflected about the boundary, so that p[i∆x, (j – 1)∆y, t] = 
p[i∆x, j∆y, t]. Therefore, Eq. 23 becomes  

                                                      
*The term “surface” is used here, although, strictly speaking, the rigid condition in a 2-D code is 
implemented along a line. 
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Similarly Eq. 27 has four terms involving y components of the acoustic particle 
velocity and wind at y = (j – 1/2)∆y, all of which are zero. Also needed are the x compo-
nents of the acoustic particle velocity and wind at y = (j – 1)∆y. But because the x coordi-
nate runs parallel to the boundary, the fields for these quantities are also reflected, so 
wx[(i + 1/2)∆x, (j – 1)∆y, t] = wx[(i + 1/2)∆x, j∆y, t] and vx[(i + 1/2)∆x, (j – 1)∆y, t] = vx[(i 
+ 1/2)∆x, j∆y, t]. Finally, in Eq. 27 there are two terms involving y components of the 
velocities at y = (j – 1/2)∆y that must be set to zero. 

Sound Propagation in a Porous Medium and Implementation 

Most common outdoor ground surfaces cannot be modeled satisfactorily as ideal, 
rigid surfaces. This is because sound energy propagates into the pores of the ground, 
where it is dissipated by viscosity and thermal conduction. Ground surfaces with rela-
tively large, open pores, such as snow, absorb much of the sound energy incident upon 
them. Surfaces with small pores, such as cement and asphalt, reflect most of the energy. 
The acoustical behavior of soils is intermediate between these extremes. For complete-
ness, we therefore consider in this report FDTD implementation of a porous ground layer. 
We show that the ground can be modeled with equations very similar to those of the air. 

Morse and Ingard (1968, Eq. 6.2.22 and 6.2.23) propose the following phenomenol-
ogical equations for sound propagation in a porous medium:  



22 ERDC/CRREL TR-04-12 

 

( )/ ,p
p
t

κ∂
= − Ω ∇ ⋅

∂
w  (61) 

,p p
t

ρ σ∂
+ = −∇

∂
w w  (62) 

where σ is the static flow resistivity, κp is the bulk modulus of the air in the pores, ρp is 
the density of air in the pores, and Ω is the porosity (void fraction) of the medium. The 
bulk modulus is bounded by its isothermal value ρc2/γ and its adiabatic value ρc2 (where c 
indicates the adiabatic sound speed), with isothermal conditions prevailing for small 
pores and/or low frequencies. Subsequent authors, such as Attenborough (1983), have 
shown that when the properties of the material are considered in bulk, ρp has a compli-
cated frequency dependence and in fact becomes a complex quantity in the frequency 
domain. At low frequencies, ρp may be replaced by sc/Ω, where sc is called the structure 
constant or effective density factor. Furthermore, sc can be related to the tortuosity factor 
q, which describes the slanting of the pores. (For pores at a fixed slant angle θ, q is 
simply 1/cos θ.) The relationship between sc and q can be determined for some idealized 
cases, such as circular cylindrical pores, for which sc = (4/3)q2/Ω (Attenborough 1983). 
However, the relationship between sc and q depends, in general, on the geometry of the 
pores. 

Restricting our attention to frequencies low enough that ρp can be considered a real 
constant and the bulk modulus is isothermal, we may rewrite Eq. 61 and 62 slightly to 
produce the following model equations for the porous medium:  
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where  

2 /e cκ ρ γ= Ω  (65) 

and  

/e csρ ρ= Ω  (66) 
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are the effective bulk modulus and density of the fluid saturating the porous material, 
respectively. This equation set is nearly the same as the one used by Salomons et al. 
(2002), except that they use κe = ρc2/Ω, which would apply to adiabatic, as opposed to 
isothermal, conduction in the pores. 

The main distinction between Eq. 63 and 64 and those for the nonmoving fluid is the 
presence of the term involving the static flow resistivity, σ. Physically this term implies 
that a static pressure gradient will not accelerate the fluid to an infinite speed; rather, the 
fluid velocity approaches an equilibrium that is determined by the viscous drag of the 
porous frame. Since Ω is always less than one and sc is always greater than 1, the effec-
tive density ρe is always greater than its value in the fluid. The phase speed, 

/ /e e cc sκ ρ γ= , is always less than c, implying that the wavelength is shorter in the 
porous ground medium than in the air. Table 1 shows some typical parameter values for 
porous media.  

 

Table 1. Typical values of the static flow resistivity, 
porosity, and tortuosity for common porous 
ground surfaces. 

Material 
Flow resistivity, σ

(Pa-s m–2) Porosity, Ω Tortuosity, q 
Asphalt 3 × 107 0.1  3.2  
Grass 2 × 105 0.5  1.4  
Forest 1 × 105 0.6  1.3  
Sand 5 × 104 0.35  1.6  
Snow 1 × 103 0.6  1.7  

 

Finite-difference implementation of Eq. 63 is the same as an implementation for a 
nonmoving medium. Implementation of Eq. 64 is slightly different. Let us begin by 
rewriting it in component form as 

,x
e x e

pw s w b
t x

∂∂
= − −

∂ ∂
 (67) 

,y
e y e

w ps w b
t y

∂ ∂
= − −

∂ ∂
 (68) 

where se = σ/ρe and be = 1/ρe. On the spatially staggered grid, we would approximate Eq. 
67 with a finite difference centered at x = (i + 1/2)∆x and y = j∆y, as discussed in Section 
3. Similarly the approximation for Eq. 68 would be centered at x = i∆x and y = (j + 1/2)∆y. 
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Assuming be and se are defined at the pressure grid nodes, we can determine these 
quantities at the nodes where they are needed using Eq. 6 and 7. The pressure gradients 
follow from Eq. 10 and 11 as before. The velocities in the terms involving se are known 
directly at the approximation centers. We see that FDTD implementation of the porous 
layer is trivial once the basic procedure for the moving medium has been worked out. 

Absorbing Boundary Condition 

Most FDTD codes use artificial absorbing layers (called absorbing boundary condi-
tions, or ABCs) around the edge of the domain to avoid spurious numerical reflections at 
the edges. Popular methods include the Cerjan attenuating layer (Cerjan et al. 1985) and, 
more recently, the perfectly matched layer (Berenger 1994, Yuan et al. 1997). An inter-
esting question is whether a porous layer of the type discussed in the previous section can 
be used as an ABC. As a starting point, consider the reflection coefficient for waves in a 
fluid incident upon a solid material (e.g., Kinsler et al. 1982): 
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−
=

+
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where Zc is the characteristic impedance for waves propagating in the solid, θi is the angle 
of incidence, and θt is the angle of transmission. The angles θi and θt are measured rela-
tive to the surface normal. Note that θt is, in general, complex, with the imaginary part 
being associated with evanescent interface waves. If the reflection coefficient is to be 
zero, we must therefore have 
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In addition, Snell’s law implies that 

sin sin ,i c tk kθ θ=  (71) 

where k = ω/c is the wavenumber in the fluid and kc is the complex wavenumber in the 
solid. Using Snell’s law to eliminate cosθt from Eq. 70 results in 
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Expressions for the characteristic impedance and complex wavenumber can be 
derived directly from Eq. 63 and 64. We look for plane-wave solutions to these equations 
and therefore set 

( ) ( ), , 0.c ci k x t i k x t
x y zp Ae w Be w wω ω− −= = = =  (73) 

Such a solution represents waves traveling in the +x direction. By substitution into 
Eq. 63 and 64, we find 
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where ρc = ρe + iσ/ω is called the complex density. Solving the preceding equations for 
the complex wavenumber, we have 
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c

e
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κ
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By definition, Zc = A/B, which is now determined as  

.c e cZ κ ρ=  (76) 

Substitution into Eq. 72 now yields 
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If we were to set κe = ρc2 and ρc = ρ in the porous layer, then Eq. 77 would be an 
identity for all angles of incidence. This outcome is to be expected, since, if the air layer 
and porous medium have identical properties, there is in effect no interface. More inter-
esting is what happens when there is attenuation in the porous medium and ρc is complex. 
Writing out the real and imaginary components of Eq. 77 explicitly, we have  
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If σ/ω is very small in comparison to ρe, this relationship can be satisfied approxi-
mately for all θi by setting κe = ρc2 and ρe = ρ, or equivalently sc = Ω = γ = 1. Thus, we 
may use a porous layer as an ABC so long as the artificial static flow resistivity is small 
enough to satisfy the relationship σ/ωρ << 1 throughout the frequency range of interest. 
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6 IMPLEMENTATION AND EXAMPLE CALCULATIONS 

Numerical Issues 

Dependence of time step on Mach number 

For numerical stability the time step must satisfy 

,rt
u
∆

∆ <  (79) 

where u is the speed at which the energy propagates and ∆r the grid spacing. On a two-
dimensional grid, ( ) ( )2 21/r x y− −∆ = ∆ + ∆ . In the FDTD literature, it is common to 
define the Courant number as 

.u tC
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Therefore, to satisfy Eq. 79, we must satisfy the so-called Courant condition, C < 1. 
The time step and grid spacing must be chosen with this constraint in mind. Since the 
grid spacing should generally be a small fraction of a wavelength for good numerical 
accuracy, the Courant condition in practice imposes a limitation on the maximum time 
step possible for stable calculations. It should also be kept in mind that satisfaction of the 
Courant condition does not ensure accurate calculations. 

Let us consider the implications of the Courant condition for propagation in a 
uniform flow. In this case, u is determined by a combination of the sound speed and wind 
velocity. In the downwind direction, we have u = u+ = c + v. In the upwind direction, u = 
u– = c – v. The wavelengths in these two directions are λ+ = (c + v)/f and λ– = (c – v)/f, 
respectively, where f is the frequency. Since the wavelength is shortest in the upwind 
direction, it is λ– that dictates the grid spacing. We set 

( )1 ,r M
N N
λ λ−∆ = = −  (81) 

where N is the number of grid points per wavelength, M = v/c is the Mach number, and λ 
= c/f is the wavelength for the medium at rest. We see that a finer grid is required as M 
increases. Regarding the time step, the Courant condition implies 
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This condition is most difficult to meet when u is largest, which is the case in the 
downwind direction. Therefore, we must use u+ in the preceding inequality if we are to 
have accurate results throughout the domain; specifically, we must set 
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From this equation it follows that the time step at M = 1/3 must be 1/2 the value nec-
essary at M = 0. At M = 2/3, the time step must be 1/5 the value at M = 0. And at M = 1, a 
vanishing time step is required. The shortening of the required time step and grid spacing 
combine to make calculations at large Mach numbers more computationally intensive. 

Algorithm discussion 

The various algorithms in Section 4 differ in their memory requirements and number 
of calculations required per time step. In the following we consider the computational 
aspects of each algorithm individually. 

Euler method, Eq. 29–31. This method is first order in ∆t and involves one calcula-
tion of the time-derivative functions fp, fx, and fy per time step. Regarding memory usage, 
the fields themselves must be stored, and also the calculations of the time-derivative 
functions at each grid point. Although one might initially think that the fields can be 
updated in situ while calculating the time-derivative functions on a grid-point-by-grid-
point basis (thereby not requiring storage of at every grid point), it must be remembered 
that the derivatives depend on neighboring field points as well as the FD center of the 
approximation. Therefore, if the fields at nearby grid points have been overwritten, the 
calculations of fp, fx, and fy will be incorrect. We characterize the calculation burden of the 
Euler method as one “unit” per time step, where one calculation unit is defined as the 
time necessary for a single evaluation of the time-derivative functions. The memory 
usage is two “units” per time step, where a single memory unit is defined as the memory 
required to store all of the fields at each grid point. 

Unstaggered leap-frog scheme, Eq. 33. Since it is based on centered approxima-
tions, this method is second order in ∆t. It involves one calculation of the time-derivative 
functions fp, fx, and fy per time step. This method is readily implemented by storing the 
fields over two time steps (j and j –1) and the time derivative functions at one time step 
(j). Actually, a clever algorithm could avoid the need for calculating and storing fp, fx, and 
fy at each grid point, since the fields at time step j – 1 can be overwritten without affecting 
the calculation of fp, fx, and fy at time step j. But such a procedure would introduce, in 
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practice, more complicated memory operations. So we characterize the unstaggered leap-
frog scheme as having a calculation burden of one unit per time step and memory usage 
of two to three units per time step, depending on the implementation. 

Runge-Kutta 2nd order, Eq. 34–38. As indicated by the name, this method is sec-
ond order in ∆t. Two calculations of fp, fx, and fy per time step are needed per time step. In 
addition to storing the fields (which can be updated in situ) and time-derivative functions 
at each time step, one must store the time-derivative functions estimated for the end of 
the time step. Therefore, this method has a computational burden of two units and mem-
ory usage of three units per time step. 

Runge-Kutta 4th order, Eq. 39–43. This method is fourth order in ∆t. Four calcula-
tions of fp, fx, and fy are needed per time step. In addition to storing the fields (which can 
be updated in situ), four sets of time-derivative functions are needed per time step. 
Actually, if one calculates the four time-derivative functions sequentially and updates the 
fields after each update, only three sets of arrays encompassing the computational grid 
need to be stored. Therefore, this method has a computational burden of four units and 
memory usage of three to five units per time step, depending on the implementation. 

Staggered leap-frog scheme, Eq. 51–53 (and discussion in the paragraph after 
these equations). This method is second order in ∆t for the terms not involving motion 
in the propagation medium and first order in ∆t for the terms involving motion. It is the 
same as the Euler scheme in its computational and memory requirements. 

Aldridge staggered scheme, Eq. 54–59. This method uses centered differences for 
all terms to achieve second-order accuracy in ∆t. One evaluation of the time-derivative 
functions is required for each whole time step. The method is most readily implemented 
by storing the complete fields over two time steps, with additional memory needed to 
store the complete time-derivative functions at one time step. A reduction in memory 
usage is possible by observing that when the velocities are updated, the velocities are 
only needed at one previous time step; similarly, when the pressure is updated, the pres-
sure is needed only at one previous time step. Therefore, some overwriting is possible. 
This method has a calculation burden of one unit per time step and memory usage of two 
to three units per time step, depending on the implementation. 

The results of this discussion are summarized in Table 2. In comparing the methods, 
it should be kept in mind that the Euler method is in actuality unstable and therefore 
cannot really be considered. The staggered leap-frog scheme is also of questionable 
validity. One might be tempted to rule out the Runge-Kutta second-order method, since it 
requires twice as many calculations per time step as the unstaggered leap-frog and the 
Aldridge staggered methods. However, methods of the same temporal order do not neces-
sarily possess the same accuracy. If one can take time steps with the second-order Runge-
Kutta that are twice as long while maintaining the same accuracy as the unstaggered leap-
frog and the Aldridge staggered methods, then the additional computational burden per 
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time step would be worthwhile. Therefore, a more careful study of the properties of the 
methods is required. We will consider some empirical comparisons between the various 
methods later in this section. A more rigorous theoretical analysis is not considered in 
this report, however. 

 
Table 2. Comparison of some methods for advancing in time the 
equations of sound propagation in a moving medium. One unit of 
memory usage is defined as the storage required for arrays of all the field 
components (acoustic pressure and particle velocities) at all grid nodes. 
One unit of computational burden is defined as the number of operations 
required to evaluate the time-derivative functions once for all of the 
fields. 

Method Order in ∆t Memory usage Computational burden 
Euler 1 2 1 
Unstaggered leap-frog 2 2–3 1 
Runge-Kutta, second-order 2 3 2 
Runge-Kutta, fourth-order 4 3–5 4 
Staggered leap-frog 1–2 2 1 
Aldridge staggered 2 2–3 1 

 

Implementation as a Matlab code 

We have implemented the two-dimensional propagation equations and numerical 
methods described in Sections 3–5 in a serial-processing Matlab code. The code provides 
a convenient environment for testing numerical methods for FDTD calculations in a 
moving medium.* The time derivatives of the fields (as given by Eq. 23, 26, and 27) are 
implemented explicitly as separate functions, allowing all of the temporal finite-
difference schemes discussed in Section 4 to be implemented with ease. 

Spatial finite differencing is accomplished in the code using the Matlab circshift 
function, which circularly shifts numerical arrays upward, downward, rightward, or left-
ward. For example, a circular shift downward would move all rows down one position in 
the array, except for the last row, which is moved to the top of the array. In the finite dif-
ference code, this means that a wave propagating downward through the lower domain 
boundary reappears at the upper boundary. This non-physical behavior must be kept in 
mind when determining the total time of a simulation, so that spurious “wrap-around” 

                                                      
*A full 3-D, Fortran code that implements all of the important features in the 2-D Matlab code is 
now under development. The 3-D code performs calculations in parallel by segmenting the 
domain into rectangular-shaped boxes and using MPI (Message Passing Interface) instructions to 
exchange fields at common grid boundaries. 
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solutions are not present. Alternatively an absorbing porous layer may be inserted in the 
vicinity of a boundary to prevent the wrap-around. 

The 2-D Matlab code has also been written to accept user-specified perfectly rigid 
and acoustically porous objects in arbitrary number and positions. Technically the model 
for rigid surfaces in Section 5 assumed a surface of infinite extent. However, the code 
will allow users to specify finite-sized rigid objects. Corners are handled by applying the 
infinite-surface model right up to the corner. 

No Flow with Rigid Boundary 

To test the FDTD code and rigid-boundary implementation, we consider in this sec-
tion a set of calculations for a harmonic source above a rigid boundary in a stationary 
medium. Analytical solutions to this problem are known. Specifically, for a point source 
radiating into an infinite 2-D medium (or equivalently a cylinder radiating into a 3-D 
medium), Morse and Ingard (1968, Sec. 7.3) show 
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where 1i = − , (xs, ys) is the source position, k = 2πf/c is the wavenumber, f is the source 
frequency, and (1)

0H  is the zeroth-order Hankel function. The bolding of p indicates the 
complex phasor of the pressure field, as opposed to its real value. The rigid surface can 
be handled by the method of images (Morse and Ingard 1968, Sec. 7.4), yielding 
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In the simulations, we implement the harmonic source with a finite duration signal 
that is tapered at the initiation and termination. The tapering alleviates numerical inaccu-
racies that are present when there is an abrupt change in the source emission. A cosine 
window taper is used here, as suggested to the authors by N. Symons. The tapered source 
equation is 
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In the preceding equation, A is the source amplitude, φ is the source phase, T1 is the 
duration of the initiation taper, and T2 is the duration of the termination taper. All calcu-
lations in this report use tapering over an interval of three periods in the harmonic wave 
(T1 = T2 = 3/f). 

The domain configuration for the no-flow calculations is shown in Fig. 2. The overall 
dimensions of the domain are 200 m in the horizontal and 100 m in the vertical. The 
origin is taken to be the middle of this domain. A 100-Hz source is placed at (–60 m, –30 
m). A rigid surface is present along the entire lower grid boundary. Absorbing layers, 20 
m thick, are present at the top and left sides of the computational grid. These absorbing 
layers have sc = Ω = γ = 1 as suggested earlier. The static flow resistivity is tapered from 
100 Pa-s m–2 at the side of the layer closest to the source to 1000 Pa-s m–2 at the other 
side.  

 

Figure 2. Configuration of the computational domain for calculations of the field 
generated by a harmonic source above a rigid boundary. 

The calculations in this section use the second-order spatial differencing scheme 
discussed earlier in this report, together with a fourth-order Runge-Kutta scheme for 
marching the solution forward in time. Two numerical grid resolutions are considered: a 
low-resolution grid with 600 × 300 points and a high-resolution grid with 1200 × 600 
points. Since the wavelength of sound at 100 Hz is 3.4 m in air, about 10 grid points per 
wavelength have been used in the low-resolution grid and 20 grid points per wavelength 
in the high-resolution grid. The Courant number (Eq. 80) was set to 0.8, leading to a time 
step of 0.58 ms for the low-resolution grid and 0.29 ms for the high-resolution grid. 
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Figure 3 shows the pressure field 0.450 s after initiation of the 100-Hz source. At this 
time, the waves have propagated approximately 150 m from the source in the +x direc-
tion. Rapid attenuation of the sound energy is seen in the other directions, where absorb-
ing layers are present. A series of spoke-like pressure minima radiating outward from the 
source are clearly evident. These are caused by destructive interference between the 
direct waves and the waves reflected from the rigid lower boundary.  

 

Figure 3. Sound pressure field 0.450 s after initiation of the 100-Hz sound source. 

Comparisons of calculated sound transmission loss (TL)* to the theoretical result, Eq. 
85, are presented in Fig. 4 and 5. These figures show results for the low- and high-
resolution grids, respectively. The receiver in this case is at the same height as the source, 
and the TL is plotted for locations increasing in horizontal distance from the source. The 
“dips” in the TL result from the interference minima mentioned in the preceding para-
graph. The sound-pressure amplitude needed for the TL calculations was determined by 
locating the maximum absolute value of the pressure within the final 30 time steps (one 
to two wave periods) of the received signal. Very close agreement is obtained between 
the theory and the high-resolution FDTD calculations. The interference minima in the 
low-resolution calculations are shifted to noticeably smaller ranges than predicted by the 
theory. 
                                                      
*Sound transmission loss is the ratio of the pressure amplitude recorded at the receiver to the 
hypothetical value that would be observed in free space at a distance of 1 m from the source. The 
TL is expressed in decibels by taking the base-ten logarithm of the ratio and multiplying by 20. 
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Figure 4. Comparison of the numerically calculated sound transmission loss with 
the theoretical result for the low-resolution numerical grid. 
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Figure 5. Comparison of the numerically calculated sound transmission loss with 
the theoretical result for the high-resolution numerical grid. 

Propagation over Porous Ground 

We next consider FDTD calculations with a porous ground model given by Eq. 63 
and 64. The domain configuration (Fig. 6) is similar to the one used for the no-flow 
calculations (Fig. 2), except that the source has been moved to the center of the domain, a 
rigid barrier has been placed 20 m to the right of the source, and a 20-m-thick ground 
layer is now present at the bottom of the domain. The absorbing layer to the left of the 
source has been removed. The source in the simulation emits 10 cycles of a 100-Hz sine 
wave, with tapering applied during the three cycles after initiation and preceding termi-
nation. The rigid barrier is implemented using the surface boundary condition described 
for rigid surfaces in Section 5.  
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Figure 6. Configuration of the computational domain for calculations involving 
porous ground and a rigid barrier. 

Figures 7–9 show calculations for an acoustically very soft surface. The porous mate-
rial parameters are σ = 100 Pa-s m–2, q = 1.8, and Ω = 0.5. In the first figure of the 
sequence, taken 0.057 s after source initiation, the sound waves are just beginning to 
impinge on the barrier. By the second figure (Fig. 8), taken at 0.154 s, a wavetrain is seen 
reflecting strongly off the barrier while a second, weaker wavetrain reflects from the 
ground. A diffracted wavetrain curls around the barrier. The shorter wavelength of the 
sound and strong attenuation within the ground are readily evident. In Figure 9, taken at 
0.250 s, the initial wave and barrier reflection are clearly seen propagating leftward. The 
wavetrain that propagated over the top of the barrier (including the diffracted wave) 
propagates to the right. Weak ground reflections associated with each of these three 
wavetrains are also visible. Waves in the ground refract strongly toward the surface 
normal, as is expected from Snell’s law. 

.
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Figure 7. Propagation above soft, porous ground in the presence of a rigid barrier, 
0.057 s after source initiation. 

 

Figure 8. Propagation above soft, porous ground in the presence of a rigid barrier, 
0.154 s after source initiation. 



38 ERDC/CRREL TR-04-12 

 

 

Figure 9. Propagation above soft, porous ground in the presence of a rigid barrier, 
0.249 s after source initiation. 

By comparison, a calculation for a moderately hard ground surface is shown in 
Figure 10. This calculation is identical to the preceding one, except that σ has been 
increased to 10–4 Pa-s m–2. This value is characteristic of very soft soil. The pressure field 
0.250 s after source initiation is shown. Notice that the higher value for the static flow 
resistivity causes the sound waves to reflect nearly perfectly from the ground in this case. 
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Figure 10. Propagation above moderately hard, porous ground in the presence of a 
rigid barrier, 0.250 s after source initiation. 

Calculations involving porous media with flow resistivities exceeding 10–4 were also 
attempted but became unstable when the sound wave impinged on the porous layer. Since 
the porous layer is highly attenuative for large flow resistivities, the instability could have 
been caused by poor resolution of the spatial scales over which the wave attenuates. 
Further research will be necessary to better understand the grid spacings and time steps 
necessary to achieve stability in a highly dissipative porous medium. 

High Mach Number, Uniform Flow 

In this section, calculations are considered for very-high-speed uniform flows. 
Although the flow speeds are much higher than would normally be encountered in the 
atmosphere, the calculations are very useful for testing the finite-difference implementa-
tion of the terms in Eq. 1 and 2 that are particular to a moving medium. The source is the 
same tapered, 10-cycle, 100-Hz signal considered in the previous section. The domain 
size for all of the calculations is 100 × 100 m. Most of the calculations have 800 grid 
points in each direction, although a higher-resolution calculation with 1200 grid points is 
also discussed. Calculations at three Mach numbers are considered: 0, 0.3 (about 104 
m/s), and 0.6 (about 207 m/s). The number of grid points per wavelength, in the upwind 
direction, is 27.2, 19.0, and 10.9, respectively, for these three Mach numbers. The fourth-
order Runge-Kutta scheme with a Courant number of 0.4 was used to advance the wave-
fields in time. 
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Figures 11–13 show the full, 2-D pressure fields at Mach 0, 0.3, and 0.6 after 0.11 s 
(0.01 s after the source has terminated). Elongation of the waves propagating in the 
direction of the flow, and compression of the waves propagating counter to the flow, are 
clearly observed. (In the Mach 0.6 calculation, wavefronts appear on the left edge of the 
figure. These are wrapped around from the right edge by the periodic BC.)  

 

Figure 11. Sound pressure field in the absence of a back-
ground flow, Mach 0 flow. 
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Figure 12. Sound pressure field for propagation in a uni-
form, Mach 0.3 flow. The flow direction is left to right. 
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Figure 13. Sound pressure field for propagation in a uni-
form, Mach 0.6 flow. The flow direction is left to right. 

Exact, time-domain solutions for 2-D wave propagation in a moving medium are not 
generally available. Recently, V.E. Ostashev* has calculated the dependence of the pres-
sure amplitude on azimuth for a monofrequency sound source radiating in two dimen-
sions. The result is 

( )
( )

( )
( ) ( )

52 2

3 / 42 2

1 sin cos, ,
,

, , 0 1 sin 1

M Mp r M
p r M M M

θ θθ
θ θ

− −
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= − −
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where p(r, θ, M) is the pressure amplitude as a function of cylindrical distance r, azi-
muthal angle θ, and Mach number. This equation is intended for application in the far-
field, that is, many wavelengths from the source. Figure 14 compares the FDTD 
calculations in the previous three figures to Ostashev’s theory. Very close agreement is 
                                                      
* Personal communication, 2003. 
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obtained at Mach 0.3. At Mach 0.6 the amplitude from the FDTD calculations is some-
what lower than expected in the upwind direction. A higher-resolution grid noticeably 
improves the predictions. Taken together, these results demonstrate that excellent agree-
ment with Ostashev’s theory can be obtained, although a very-high-resolution grid is 
required for high Mach numbers.  
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Figure 14. Comparison of the angular dependence of the pressure amplitude from 
the FDTD calculations of Ostashev’s theory. The upwind direction is 0º and the 
downwind direction is 180º. 

Figures 15 and 16 repeat the Mach 0.3 calculation shown in Figure 12 except that 
different temporal integration methods are used. Results for the “staggered leap-frog” 
method (Fig. 15) are qualitatively similar to the fourth-order Runge-Kutta results. The 
time step used for the staggered leap-frog calculations was 1/4 (Courant number C = 0.1) 
that used for the fourth-order Runge-Kutta calculations, approximately equalizing the 
amount of computational effort involved (Table 2). Close examination of the near-source 
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wavefronts propagating in the downwind direction reveals a noisy appearance not present 
in Figure 12. This noise is actually a growing numerical instability in the calculations. 
Such numerical instability is even more pronounced in the second-order Runge-Kutta 
calculations (Fig. 16). These calculations were performed with C = 0.2. 

 

Figure 15. Sound pressure field for propagation in a uni-
form, Mach 0.3 flow. The staggered leap-frog method was 
used to advance the solution in time. 
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Figure 16. Sound pressure field for propagation in a uni-
form, Mach 0.3 flow. The second-order Runge-Kutta method 
was used to advance the solution in time. 

Downwind and upwind results at Mach 0.3 are compared for several temporal inte-
gration methods in Figures 17 and 18. Shown are fourth-order Runge-Kutta (C = 0.4), 
unstaggered leap-frog (C = 0.1), and staggered leap-frog (C = 0.1). The first two of these 
methods yield graphically indistinguishable results. The staggered leap-frog scheme, 
however, yields a signal with a noticeably larger amplitude. The numerical instabilities 
are also clearly evident at small distances from the source. The lack of agreement 
between the staggered leap-frog scheme and the other methods, combined with its non-
rigorous method of derivation, strongly suggests that it is inferior for this problem. 
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Figure 17. Sound pressure traces for downwind propagation at Mach 0.3. Shown 
are results for the fourth-order Runge-Kutta, staggered leap-frog, and unstaggered 
leap-frog methods. 

Downwind 
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Figure 18. Sound pressure traces for upwind propagation at Mach 0.3. Shown are 
results for the fourth-order Runge-Kutta, staggered leap-frog, and unstaggered 
leap-frog methods. 

A similar comparison of downwind and upwind results, except at Mach 0.6, is shown 
in Figures 19 and 20. The temporal integration methods shown in these figures are fourth-
order Runge-Kutta (C = 0.4), unstaggered leap-frog (C = 0.1), and Aldridge (C = 0.1). 
The second-order Runge-Kutta and staggered leap-frog methods were both extremely 
unstable at this Mach number and therefore are not shown. The three methods displayed 
in the figure, however, were all stable and provide graphically indistinguishable results. 

 

Upwind 
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Figure 19. Sound pressure traces for downwind propagation at Mach 0.6. Shown 
are results for the fourth-order Runge-Kutta, Aldridge, and unstaggered leap-frog 
methods. 

Downwind 
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Figure 20. Sound pressure traces for upwind propagation at Mach 0.6. Shown are 
results for the fourth-order Runge-Kutta, Aldridge, and unstaggered leap-frog 
methods. 

Based on these comparisons of the temporal integration methods, it appears that the 
unstaggered leap-frog, Aldridge, and fourth-order Runge-Kutta methods all provide good 
accuracy and stability for a similar level of computational effort. More detailed analysis 
would be necessary to determine which of these methods is most satisfactory. From a 
practical standpoint, any of them appears to be a reasonable choice. 

Nonuniform (Turbulent) Flow 

Atmospheric turbulence has several important effects on signals received by acoustic 
sensors: it causes signal levels to fluctuate randomly, it distorts wavefronts (thereby 
changing angles-of-arrival and hindering source direction finding), and it scatters sound 
energy over and around objects. Therefore, incorporation of turbulence into FDTD 

Upwind 
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calculations is of much practical importance. Two general approaches to generating the 
necessary turbulence input fields are possible: kinematic and dynamic. The kinematic 
method consists of synthesizing random fields that possess certain desired statistical 
properties characteristic of actual turbulence. The dynamic method consists of simulating 
actual turbulence with fluid dynamical equations. 

The primary advantages of the kinematic methods are low computational burden, the 
ability to readily generate fields at a high spatial resolution, and tight control over statisti-
cal properties. This last feature is useful, for example, in comparing the FDTD calcula-
tions to known analytical solutions. The primary advantage of the dynamic methods is 
that the temporal properties and the higher-order statistics of the fields are as close as 
possible to the actual atmosphere. The main dynamic method of interest for FDTD cal-
culations at Army tactical scales is large-eddy simulation, or LES (Moeng 1998). At pre-
sent, LES is capable of providing inputs to an FDTD code at a resolution of several 
meters (e.g., Sullivan et al. 1996). Conceivably the LES could be directly coupled with 
the acoustical calculation by simultaneously solving a single set of fluid equations. How-
ever, such a procedure can lead to poor results because of the discrepancy between the 
dominant scales of the atmospheric turbulence process and the acoustic wavelength, as 
well as the small magnitude of the acoustic fluctuations relative to the atmospheric ones. 

For illustrative purposes we consider here a single example of FDTD calculation of 
sound propagation through turbulence. The example uses the recently developed tech-
nique for generating kinematic turbulence called quasi-wavelets (QWs). Like ordinary 
wavelets, QWs are based on rescaling and translation of a specified parent function. 
Unlike ordinary wavelets, the positions and orientations of the QWs are random. 
Goedecke et al. (2003) derived a random QW distribution and parent function that 
exactly reproduce a prescribed turbulence spectrum such as von Kármán’s. Figures 21 
and 22 show snapshots of vx and vy, respectively, for a random QW field. As is charac-
teristic of atmospheric turbulence, there are strong but infrequent patches of large-scale 
velocity fluctuations, interspersed with more numerous but weaker small-scale patches. 
FDTD calculations of the propagation of a six-cycle burst at 100 Hz through the QW 
fields is shown in Figure 23. Note the increasing distortions to the wavefronts as they 
propagate from the source. This example is somewhat exaggerated in that the turbulent 
velocity fluctuations have a standard deviation of about 10 m s–1, which is an order of 
magnitude higher than would typically be encountered in practice. However, the propa-
gation distance is much shorter than typical in Army tactical scenarios. 
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Figure 21. Snapshot of a random turbulence field generated by the quasi-
wavelet method. The x component of the wind velocity is shown. 
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Figure 22. Same as Figure 21, except that the y component of the wind 
velocity is shown. 



FDTD  Simulation of Sound Propagation 53 

 

 

Figure 23. Propagation of a six-cycle burst at 100 Hz through the turbu-
lence fields shown in Figures 21 and 22. 
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7 CONCLUSION 

This report has addressed many aspects of finite-difference, time-domain (FDTD) 
simulation of sound wave propagation in a moving medium, from the theoretical equa-
tions upon which it is based to practical issues of numerical implementation. One of the 
most important insights is that motion in the propagation medium makes impossible 
direct implementation of the customary, staggered grid schemes used for other types of 
wave propagation problems. This is because of the presence of the advective terms in the 
differential equations, which do not naturally center themselves on the grid points where 
they are needed. Therefore, alternative finite-difference formulations must be considered. 

The numerical approaches considered in this report were all based on the customary, 
staggered spatial grid, in which the pressure and particle velocities are displaced by one-
half of the grid interval. Advancement of the wavefield variables in time was then con-
sidered in terms of unstaggered and staggered temporal grids. Two temporally unstag-
gered schemes—the fourth-order Runge-Kutta method and the unstaggered “leap-frog” 
method—were found to be quite satisfactory. A temporally staggered scheme, with fields 
stored from two previous time levels, also performed well. However, a non-rigorous, 
staggered, leap-frog scheme analogous to the one currently in widespread use for FDTD 
wave propagation calculations in a non-moving medium was found to be inaccurate. 
Additional comparisons of the various temporal integration schemes would be very 
worthwhile. 

Rigid boundary conditions and porous ground layers were also considered in this 
report. The rigid condition is useful for modeling buildings, barriers, tree trunks, and 
other acoustically hard objects. A simple, low-frequency model for the porous ground 
can be easily incorporated into an acoustic FDTD code. However, the utility of this 
model is limited to materials with low flow resistivities, such as snow or coarse sand. 
Therefore, it would be highly desirable to develop other approaches to implementing the 
ground material, such as a ground-layer model with applicability to a broader frequency 
range or an impedance boundary condition that does not require an actual ground layer. 
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